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1. Introduction

Machine learning has enabled many recent advances in
drawing sketches and creating abstract art. Several recent
efforts have focused on creating realistic sketches and im-
itations of human-drawn sketches [2] or generating photo-
realistic images from simple sketches. [3} 16, 1] Here, we
take the opposite approach and consider the problem pro-
posed by [2] of creating minimal sketches of objects such
that the sketch still abstractly resembles said objects. We
ultimately hope that this project will help to expand the ab-
stract artist’s creativity in how common objects can be rep-
resented by providing sketches of how to envision things
minimally.

2. Problem Statement

We can break down our objective—creating minimal
sketches of objects such that the sketch still abstractly re-
sembles said objects—into two components: (1) creating
minimal sketches, and (2) ensuring that the sketch abstractly
resembles the original object. We note that there exist
two common representations of “sketches”: as a series of
strokes (vector graphics), or as a set of pixels (raster graph-
ics). [2, 4] We chose the latter since it is more amenable to
convolutional neural networks. To quantify the “minimal-
ism” of a raster sketch, we propose the following metric:
ratio of black (object) to white (background) pixels, where
the dimensions of the image are fixed a priori (e.g., 256 x
256).

To evaluate how well a sketch abstractly resembles the
original object, we consider two approaches. The first is
human perceptual studies, as previously done by [3l 6].
The second is dataset-specific: given a paired photo-sketch
dataset, for example, we could compute how similar the
generated sketch is to the target sketch. For unpaired
datasets, there is no perfect objective; however, we can build
a classifier to verify whether the generated sketch falls into
the same category (e.g., cat or airplane) as the input image.
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3. Datasets
3.1. Paired Dataset

First, we will work with the Sketchy dataset, which
consists of 125 categories (e.g., airplane, cat, etc.), each
with 100 unique photographs, each paired with roughly five
human-drawn sketches for a total of 12,500 unique pho-
tographs of objects and 75,471 human sketches. [4] Both
the photos and sketches are made available as 256x256x3
(RGB) images; we convert the sketches to binary 256x256
images before use.

Note that a paired dataset like Sketchy can still be used
to train an unpaired dataset model like CycleGAN. [6]

3.2. Unpaired Datasets

Next, we will work with Quick Draw, an unpaired sketch
database, and CIFAR-10, an unpaired image database. The
Quick Draw dataset consists of 325 categories of sketches,
each with a varying number of unique sketches per category
for a total of 50 million sketches given in jpg format. The
CIFAR-10 dataset consists of 60,000 color unique images
in 10 classes for 6,000 images per class of object.

Similar to our first approach with the paired image-
sketch database, we will create an “image-to-sketch” gener-
ator, which we can borrow our implementation from the im-
age to sketch encoder used for the paired dataset approach,
implement a sketch discriminator, and then implement a
sketch-to-image generator (similar to the decoder used for
the paired dataset).

4. Technical Approach
4.1. Baseline: Edge Detection

For a simple baseline model, we used a 2D Sobel filter.
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4.2, Paired Dataset Model: pix2pix

Since we had access to a paired dataset, Sketchy, [4]
we first experimented with the pix2pix conditional GAN
(cGAN) image-to-image translation model. [3] Like uncon-
ditional GANs, cGANSs consist of a generator GG that learns



to fool a discriminator D. Unlike unconditional GANSs,
however, both the cGAN generator and the discriminator
observe the input image—in other words, the cGAN genera-
tor is “conditioned” on an input image rather than random
noise. The pix2pix objective function is

G* = argmén mDin Leaan(G, D)+ AL1(G) (1)

where L. an is the cGAN loss

»CCGAN(Gv D) = ]Ez,y 10g D(.’L‘, y)+Ez,z IOg(l_D(xa G(!E, Z)))
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and £, is the L1 loss (which encourages sharper images
than L2) [3] between the generated sketch and the target
sketch

Ly(G) = Ezy,- ly — G(x, Z)||1 3)

with = sampled from the set of photos, y sampled from the
set of sketches, and z a noise component, implemented as
dropout noise (at both train and test time).

To encourage the generation of simpler sketches, we ad-
ditionally add a penalty term (effectively counting the num-
ber of black pixels)

on top of the pix2pix objective (Equation[I) for a final ob-
jective function

G* = arg mci:n mDin Lecan(G, D)+ A1 (G) +7Lpiz(G).
)

4.3. Unpaired Dataset Model: CycleGAN

The second method we used is CycleGAN. [6] Instead of
relying on paired datasets as in pix2pix, CycleGAN learns
mapping functions between two domains X and Y given
two sets of datasets each belonging to one domain. Cy-
cleGAN uses the same adversarial loss function defined for
pix2pix, but includes an additional cycle consistency loss
function in our final objective function. This cycle consis-
tency loss is what enables the training to learn the correct
mapping between two domains, without a one-to-one map-
ping. Intuitively, cycle consistency means when we apply
a backward generator onto the result, we should get an im-
age similar to the original input. That is, for the mapping
function G : X — Y, F : Y — X and the original im-
age x € X, we have F'(G(z)) = x. We use L1 norm to
measure the similarity between F(G(z)) and x. Similarly,
we can measure the similarity between G(F'(y)) and y for
y € Y. Finally, since we want both mappings G and F' to
be accurate, the cycle consistency loss is simply the sum of
both terms.

5. Preliminary Results

Our preliminary results used the original pix2pix and
CycleGAN models without the added loss terms penaliz-
ing the number of black pixels in the generated image. This
will be addressed in our final work. Additionally, we only
trained and evaluated on images in the airplane category of
photos in the Sketchy dataset. Eventually, we plan on train-
ing over a subset of the categories (say, 100) and evaluating
our models on the remaining (say, 25) categories to evaluate
our models’ generalization performance.

The evaluation metric we used to compare the two afore-
mentioned models with the baseline is the number of black
pixels in the generated images of the entire test dataset. In-
stead of using a single statistic to represent the number of
black pixels in the predicted image set, we show a distribu-
tion of the number of black pixels below.

As we can see (Figure 3), the CycleGAN model for the
unpaired dataset seemed to outperform the pix2pix model
for the paired dataset. In our preliminary tests, we noticed
that after training for several epochs, the predicted sketch
for the pix2pix model did not change between different
sample inputs we tested with. We will work on investigating
this matter past this milestone.

Below we show the predicted sketch image of the same
input on the rightmost side - n02691156_9966.jpg in the
Sketchy dataset - generated from the two aforementioned
models.
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Figure 1. Distributions of the number of black pixels generated
by edge detection, the original sketches, CycleGAN, and pix2pix
(left-to-right, top-to-bottom). The total number of pixels in a 256
X 256 image is 65536.
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Figure 2. Distributions of L1 distance between target sketch and
predicted sketch by pix2pix and edge detection (top-to-bottom).
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Baseline: edge detection
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Figure 3. Sketches generated by edge detection, pix2pix (trained
20 epochs), and CycleGAN (trained 40 epochs) (top to bottom).



