
1

Using POMDPs to Learn Language in a Spatial
Reference Game

Suvir Mirchandani Levi Lian Benjamin Newman
{smirchan, levilian, blnewman}@stanford.edu

Abstract—Much of early human language learning takes place
in an unsupervised setting. In this work, we investigate how
autonomous agents can use goal-oriented tasks in a spatial
reference game to learn language. This problem is made difficult
by the high dimensionality of the state and action spaces as
well as the fact that it relates achieving one objective (i.e.
reaching a goal) to achieving a secondary one (i.e. learning
directional language). We formalize this problem as a Markov
decision process (MDP) and partially observable Markov decision
processes (POMDPs). We analyze the performance of the agent
under different conditions using dynamic programming and
online POMDP solution techniques. We perform and visualize
simulations of the policies and real-time update of belief states.
We observe that knowing the language can influence the time
it takes to arrive at a goal state, and completely learning the
language can be incentivized by explicitly optimizing for that
task.

I. INTRODUCTION

A. Background

Human language is at its a core a method for us to share
collective experience and knowledge. Understanding language
is therefore a social process that depends on speakers’ reasoning
about each other’s intentions and goals [1]. In 1975, linguist
Paul Grice formalized many of the rules that speakers tend to
follow when cooperatively interacting with one another. These
include maxims such as “make your utterances truthful”; “be
informative and relevant”; and “avoid unnecessary prolixity
and ambiguity.” Grice’s maxims have been experimentally
observed through reference games, in which study participants
have to identify an object picked out by another participant
after hearing a word selected from a small vocabulary [2]. For
these reference game scenarios, the maxims have also been
computationally modeled in a Bayesian process where the
agent hearing the utterance reasons about the speaker’s beliefs
of their own understanding [3].

Some prior work looks beyond single step reference games to
multi-step interactive games. In these, multiple agents either try
to find a certain unknown location or to compel each other to
accomplish some task [2], [4]. These so-called spatial reference
games provide a more challenging task as now agents have to
model how their beliefs over each other’s beliefs change as
the game progresses. Vogel, Potts, and Jurafsky [5] formulated
this problem as a decentralized-POMDP while Mordatch and
Abbeel [4] used a deep neural network as a policy function.

We investigate a related but somewhat orthogonal question.
In the aforementioned experiments, there were pre-defined
messages that the listening and speaking agents could use and

understand. In this project, we are interested in relaxing the
constraint that both parties know the language being used to
communicate a priori.

B. Related Work

Collaboration between humans and robots with natural
language understanding systems is an active research area.
While the traditional method is to learn from annotated text,
grounding language in simulated environments has led to
several novel approaches. Vogel and Jurafsky [6] derive the
mapping from features of paths to the instruction language
using reinforcement learning. This mapping helped an agent
learn how to use natural-speech instructions to navigate around
a map. In their paper, the state space combines world and
linguistic features, representing both the physical positions and
the interpretations of the human instructions.

While those methodologies focus on low-level commands
(e.g., up, down, left, right) which directly map to movements,
another approach focuses on finding the policy given a natural
language instruction such as “Give me the water bottle.”
MacGlashan, Littman, Loftin, et al. [7] use reward and
punishment for these training high-level tasks. Notably, rather
than updating the belief state over possible actions to take,
this approach induces a probability distribution over the set of
possible tasks. The agent then plans a solution using an MDP
planning algorithm and begins following the policy.

Conveying tasks through natural language provides an
intuitive interface that does not require any technical expertise,
but implementing such an interface requires methods for the
agent to learn natural language commands grounded in the
world, a difficult learning task. We therefore experiment with
the interplay between a spatial goal and learning command
meanings.

C. Problem Definition

In order to relax the constraint that both parties have prior
knowledge of the language, we define a spatial reference game
variant. In our game, there are two agents in a 2D rectangular
room along with one goal location in the center of the room.

In our game, the agent that knows the location of the goal
(the speaker) cannot move (and is not visible in the room),
but it can speak to the agent that is searching for the goal (the
listener). The listener can move but cannot speak. There are
four utterances the speaker can use to direct the listener, which
correspond to UP, DOWN, LEFT, and RIGHT. The listener can
move in any direction from its current location.

2

We begin with the listener agent knowing the directions that
each utterance corresponds to, along with its own location. We
then remove its knowledge of its location, and finally, we take
away its knowledge of what the utterances mean. Through
this process, we analyze the response of an agent to directions
and investigate its ability to learn the meanings of previously
unknown instructions by the process of navigating to a goal.

II. BASELINE MDP FORMULATION

A. Method

To start, we formalize this problem as a Markov Decision
Process (MDP), where both the agent’s location and directions
are known to the agent. Later we will relax these assumptions.
To formalize this MDP, we must define the necessary variables:
the states S , actions A, transitions T , and rewards R.
• S:

– (x, y): the agent’s x and y coordinates in the room.
– σ: the command or instruction that the agent would

receive from the speaker indicating the direction in
which they should go.

– status: whether or not the agent has reached the goal
state.

For implementation, we discretize the state space with 50
possible x-values and 40 possible y-values. There are 4
possible command values and 2 possible status values for
a total of 16000 possible states.

• A:
– a:one of 24 equidistant angles that cover the range

between [−π, π). These represent the direction in
which to travel. The agent moves a fixed step-size in
every time-step.

• T (s, a, s′): transitions are deterministic in this formu-
lation; movement from one state to another occurs in
the direction of the action. Each component of the state
updates as follows:

– (x′, y′) = (x+ ∆p cos(a), y + ∆p sin(a), where ∆p
is the constant step-size representing the constant
velocity.

– σ′ = query_speaker(s′). We define the function
query_speaker as

query_speaker(s) = round(arctan

(
gy − s.y
gx − s.x

)
,
π

2
)

where (gx, gy) is the location of the goal position
(which the speaker knows) and the round(·) function
rounds the angle computed to the nearest π/2, repre-
senting the best direction to travel in. We associate
the direction the speaker obtains with a command
using the following table:

Command Direction(s)

CMD1 ±π
CMD2 −π

2
CMD3 0
CMD4

π
2

– status’ = 1[(x′, y′) = (gx, gy)].

Fig. 1. An example result from value iteration. The agent reaches the goal in
14 timesteps. The green circle is the goal location and the red dot is the agent.
The red line corresponds to path the agent took from its starting location.

If the next state, s′, is consistent with these updates, then
the value of T is 1; otherwise it is 0.

• R(s, a): There are three reward sources we consider.
– Time Cost: We penalize the agent with -0.1 for every

step to incentivize taking actions to reach the goal
quickly.

– Wall-contact Cost: If an action takes the agent to a
state where it makes contact with the edge of the
room, there is a -1 reward.

– Reaching the Goal: Arriving at the goal state gives a
reward of +100.
This means the final reward equation is:

R(s, a) =− 0.1− 1[wall_contact(s.(x, y))]

+ 100 · 1[s.status = 1]

B. Results

Because the action and state spaces are both discrete, we
can apply value iteration to extract the optimal policy. In this
formulation, the agent has perfect information about its position
and the directions the commands map to, so we can use it as
a baseline for our later models.

To start, we fixed the goal in the center of the 50 × 40 grid
at position (-5, -10) and ran value iteration. We defined the
agent to be “at” the goal when it was within two units of the
goal position. With these conditions, we ran value iteration to
extract the optimal policy. Simulating 100 trials led to a mean
total reward of 99.097 (on average taking 10 steps to reach
the goal position) and a standard deviation of 0.42.

Because the reward did not depend on following the
command instructions at all, this MDP policy should be
identical to the policy achieved by a similar MDP without
the command in the state at all. In fact, running value iteration
on that modified MDP with the same random seed obtains the
same results over 100 trials: a mean total reward of 99.097
and a standard deviation of 0.42.

C. Metrics

To evaluate the success of our later experiments, we will
compare the reward and number of timesteps computed given

3

the same seed and number of simulations to those from the
optimal policy above. This optimal policy gives us an idea of
the best performance possible. In Table I, we summarize all
the experimental results.

III. EXPERIMENTS IN REMOVING INFORMATION

Now we turn to the more interesting problem at hand: what
changes when we remove some of the agent’s knowledge of the
state of the world? We investigate this broad question through
two different experiments in which the agent no longer knows
its own location and must determine how to get to the goal state
based on the commands it receives. In the first experiment, we
compare how quickly the agent arrives at the goal state when
it knows the mappings between commands and directions, to
the case where it does not have this knowledge. In the second
experiment, we encourage the agent to learn the mapping from
commands to directions by slightly altering the definition of
the goal state. We then compare the agent’s speed in reaching
this goal state when it knows the command-direction mappings
a priori to when it has to learn them from scratch.

In both of these experiments, we remove information from
the agent by formulating the problem as a POMDP. The
definition is very similar to the definition of the MDP above.
Because now we are dealing with the command-direction
mappings, we include this information in the state. The
redefined state variable is:

S:
• (x, y): the agent’s x and y coordinates in the room. [Same

as before]
• status: whether or not the agent has reached the goal state.

[Same as before]
• σ1, σ2, σ3, σ4: all are angles in the range [−π, π)

indicating the agent’s current guess of command-direction
mapping. (σ1 is the guess for CMD1, etc.)

Because we changed the state, we have to modify the
transition model as well.
T (s, a, s′): The transition distribution is very similar to the

original MDP’s transitions. For the x, y, and status components,
it is identical and it is still deterministic. To update the four
command values, we query the speaker to determine what
command we would get from the new position (x′, y′) and
then use a temporal difference update (with η = 0.3) to push the
agent’s direction value for that command toward the direction
that was taken, a. This is inspired from reinforcement learning.
Formally, for the command components of s and s′ we can
define:

next_cmd = query_speaker(s′)

tcmd(s, a, s
′) =

s′.σ1 = η(s.σ1 − a) next_cmd = CMD1

s′.σ2 = η(s.σ2 − a) next_cmd = CMD2

s′.σ3 = η(s.σ3 − a) next_cmd = CMD3

s′.σ4 = η(s.σ4 − a) next_cmd = CMD4

When tcmd(s, a, s
′) is true, there is a valid transition

(probability of 1) otherwise the transition probability is 0.
The reward model and actions remain the same.
Finally, because this is a POMDP, we need to define an

observation distribution Ω that consists of the commands the
agent receives at any given state. These are a deterministic
function of the state and represent the direction from the agent’s
current position to the goal rounded to the nearest π

2 . (This is
the same as calling the query_speaker function defined for the
transition distribution.)

Ω(s, a) = query_speaker(s)

Note that when we refer to the observations/commands
received we use just the command name, but when we refer
to a specific state s’s mapping for the associated direction we
use the syntax s.σ1, s.σ2, etc.

A. Belief State Representation

Because of the high dimensionality of our state space, instead
of representing our belief over our current state explicitly, we
sample 3000 points from the distribution and represent them
as particles. We then update our belief over those points using
particle filtering without replacement. When doing resampling,
similar to Vogel, Bodoia, Potts, et al. [2], we add an additional
weight factor to the belief update based on the command. We
assign higher weights to particles whose command states (σ1,
σ2, etc.) are closer (in angular distance) to the action we just
took. More precisely, we calculate the angular distance between
the direction the agent moved in and its direction values for
each command. For the commands that we do not observe,
we want this difference to be high, so we sum them. For the
command that we do observe, we want this difference to be low,
so we add π minus that distance. We normalize and compute
the average of these values and use it to weight each particle.
Formally, each particle has a weight:

W (o, a, s) =
π − dist(s.o, a)

4π

+

∑
c∈{CMD1,CMD2,CMD3,CMD4}/o dist(s.c, a)

4π

where dist(·, ·) is the absolute value of the angular distance
between two angles, and s.o is the σ associated with observation
o.

We do not use the value for a directly. We perterb it slightly
to avoid particle deprivation.

IV. EXPERIMENT 1: NO LEARNING

In Experiment 1, we were interested in determining if
the agent would be able to reach the goal state following
commands it receives without knowing its position in the room,
independent of knowing the directions the commands refer to.
This experiment directly builds on the previous MDP one in
that it keeps the original task—reaching the goal position—and
just removes the agent’s knowledge of its own location. There
were two different conditions used in this experiment:

4

1) KNOWN_COMMANDS: In this condition, the POMDP
is initialized with the commands mapped to the correct
directions, and they are fixed. In other words, the value
of the σ1 is −π, σ2 is −π2 , etc.

2) UNKNOWN_COMMANDS: In this condition, the
POMDP is initialized with random values for each of
the command mappings. The transition function includes
the temporal difference update described above.

A. Hypothesis

Perhaps somewhat counterintuitively, we hypothesize that
these two conditions will perform identically. Despite the
difference in command mapping initialization, in both POMDPs,
the goal state is a position in the rectangular room. This
means the reward solely depends on the position and not
on the command mappings. The agent will then try to arrive
at this position by taking the action that brings its belief states
closest to the goal without any attention to the commands it
receives. Interestingly, even though the agent does not know
its position, and the problem definition is slightly different
from the MDP’s, we expect the behaviour to be comprable to
the MDP’s. Intuitively, this is because each possible command
specifies only one direction, so the agent will travel in one
direction until it receives a new command and then change
directions. We elaborate on this further in Section VI.

B. Methods

We use the POMDP implementations in POMDPs.jl [8].
Because the terminal state is so difficult to reach, when we
tried using the BasicPOMCP solver to solve this modified
POMDP, we were unable to reach convergence. The agent kept
on getting stuck between two states, so we turned instead
to a more powerful version of POMCP: POMCPOW [9].
POMCPOW originally was developed to extend Monte Carlo
Tree Search and POMCP to continuous action and observation
spaces. A major difference between these two algorithms is that
POMCPOW requires a weighted particle filter. These weighted
particles are necessary because POMCPOW simulates how
the belief distribution (i.e. particles) will change over time
compared to POMCP, which just simulates how the state
(and action/observation history) changes. This is important
in our case, because the belief distribution over our command
mappings impacts what actions we take which then in turn
determine how the state changes. Thus by simulating how the
belief distribution evolves, we are considering many different
potential ways to arrive at the correct command mapping. We
use the upper confidence bound (UCB) strategy for choosing
actions with a parameter value of 20.

C. Results

We simulated 100 trials for each condition. For Condition 1,
the mean reward was 98.778 with a standard deviation of 0.832.
The number of timesteps to solve had a mean of 11.32 and a
standard deviation of 5.150. For Condition 2, the mean reward
was 98.683 with a standard deviation of 0.764. The number of
timesteps to solve had a mean of 12.07 and a standard deviation

Fig. 2. A comparison of Condition 1 (left) and Condition 2 (right) at t = 1
(top), t = 7 (middle), and the last time step (bottom). The purple dots are
particles in the state space which together represent the belief distribution.
The four polar graphs below the room drawing render the command mapping
direction for σ1, σ2, σ3, and σ4 (left to right).

of 5.048. We performed a two-sample t-test that is robust to
differing variances using the Welch-Satterthwaite procedure,
finding that the two distributions are not statistically different
(p = 0.4498).

Figure 2 shows a sample of both conditions solving the
problem from a particular initial state.

V. EXPERIMENT 2: LEARNING THE LANGUAGE

We now discuss a more difficult and interesting problem—is
it possible to learn which commands refer to which directions
from scratch, and if so, how? To address this problem we make
some more changes to our POMDP model.

First, we have to consider our goal state. In the previous
experiments, we have assumed that the ‘status’ component of
our state takes on a value of 1 when we arrive at the goal
position. As pointed out in the Experiment 1 section, this is
not suitable because there is no incentive to learn all of the
correct direction mappings. Even worse, because the room is
a rectangle, an agent will receive at most 2 distinct commands
over the course of solving the POMDP (with an online solver
such as POMCP) since it is grounded in a 2-dimensional
space. In order to address this problem, we need to modify our
terminal condition to include information about the command
mappings we hold in our state. More precisely, we will say
that we have reached the terminal state when we are at the goal
position and each command (sigma) is within some threshold

5

value, t, of the true direction that it should be mapped to. We
used t = π

4 . Mathematically:

isTerminal(s) = 1[(| gx − x |< 2) ∧ (| gy − y |< 2)

∧ (| s.σ1 + π |< t) ∧ (| s.σ2 +
π

2
|< t)

∧ (| s.σ3 |< t) ∧ (| s.σ4 −
π

2
|< t)]

While this goal state is the state the agent must be in to have
learned the language, this is a very difficult state to reach. To
quantify the difficulty, we again compare the results of solving
this POMDP under the same two conditions as in Experiment
1:

1) KNOWN_COMMANDS: In this condition the POMDP
is initialized with the commands mapped to the correct
directions—or in other words, the value of the σ1 is −π,
σ2 is −π2 , etc.

2) UNKNOWN_COMMANDS: In this condition, the
POMDP was initialized with random values for each
of the command mappings.

A. Hypothesis

Unlike in Experiment 1, here we hypothesize that if the
commands are known, then the agent will reach the (modified)
goal state much more quickly than if the commands are
unknown. This is because if the commands are known,
the problem collapses to finding the goal position (like in
Experiment 1) whereas if the commands are initially unknown,
the goal position as well as the command directions must
be found. Arriving at the values of four additional angles in
[−π, π) takes more time.

B. Methods

We used POMCPOW as an online POMDP solution method
for the same reasons we discuss in Section IV-B.

C. Results

We again performed 100 simulations for each condition,
with an upper bound of 200 timesteps per trial. Samples
that exceeded this bound were omitted from analysis. Under
Condition 1, the mean reward was 98.782 wtih a standard
deviation of 0.832. The number of timesteps to solve had
a mean of 11.28 and a standard deviation of 5.152. Under
Condition 2, the mean reward was 82.044 with a standard
deviation of 30.619. The number of timesteps to solve had a
mean of 98.36 and a standard deviation of 51.889. Here these
distributions are statistically different (p < 0.0001, two sample
T-test with unequal variance).

VI. DISCUSSION

A. Reaching the Goal State

In both of these experiments, our hypotheses about the time
it takes the agent to reach the goal state were confirmed. It
appears that receiving commands indicating the direction of
the goal does help the agent reach the goal, but they only help

Fig. 3. A comparison of Condition 1 (left) and Condition 2 (right) at t = 1
(top), t = 10 (middle), and the last time step (bottom) for Experiment 2. The
red line represents the agent’s path and is more faint for earlier timesteps.
Again the purple dots represent belief states and the intensity of the purple is
the weight of that belief.

Fig. 4. Representation of the final command mappings of the 100 trials in
condition 2 of Experiment 2. From the inside out we have the values of σ1,
σ2, σ3, σ4.

the agent learn the language when that is the explicitly set as
the task. Why might this be the case?

In Experiment 1 we showed that the performance of an agent
that knew the language a priori was the same compared to
one that did not. In other words, knowing which command
maps to which direction does not matter in reaching the goal
state more quickly. This is a bit counterintuitive, but can be
understood by considering that in this experiment, the agent
only needs to localize itself to arrive at the goal position. Both
conditions have access to the omniscient speaker, so they can
use the command they received to determine what quadrant

6

TABLE I
EXPERIMENTAL RESULTS

Name Reward Mean Reward Std. Dev.

MDP with No Commands 99.907 0.42
MDP with Commands 99.907 0.42
Exp. 1 Cond. 1 98.778 0.832
Exp. 1 Cond. 2 98.683 0.764
Exp. 2 Cond. 1 98.782 0.832
Exp. 2 Cond. 2 82.044 30.619

of the rectangle they are in. Belief particles in locations that
receive a different command are then discounted. This leads to
a distinct triangle shape early on in the solving process (Figure
2, top row). Once the agent reaches the boundary between
two command spaces, the triangle collapses to a single line of
possibilities as other belief states not on that line can not be
possible (Figure 2, middle row). Because the agent chooses an
action based on the average of its belief states, it then heads
toward the goal (Figure 2, bottom row). Nothing in this process
depends on the agent’s internal mapping from commands to
directions. Only when we required the agent to have the correct
direction mappings in the goal state did we observe that the
condition where these mappings were randomly initialized
performed worse. Interestingly, in Experiment 1, the average
number of steps to reach the goal state in the POMDP case
was very similar to the number it took to reach the goal state
in the MDP scenario (∼ 11 and 12 for the POMDPs and 10
for the MDP). This means that knowing the direction to the
goal provides almost as much relevant information as knowing
the actual current location.

B. Learning the Language

One of the major goals of this work was to investigate
whether the mappings from commands to directions could be
learned by working toward some, grounded, auxiliary goal
(reaching a certain location). To this end we were somewhat
successful. We can evaluate this success by looking at the
values each command takes on in the terminal state in each
experiment.

In Experiment 1, even though knowledge of the language
does not impact how quickly the agent arrives at the goal
position, the agent is still able to learn some of the correct
command mappings. This is because the transition function
takes into account the speaker’s commands in the next state, and
effectively pushes the values of the agent’s internal command
mappings (σ) toward the true directions of the commands.
However, because any initial position will result in a maximum
of two distinct commands observed, we can only expect the
agent to learn two commands from a given starting position.
This also a downside of using an online solver—if we could
construct an optimal policy from each initial state, we might
be able to extract the directions for each of the commands, but
unfortunately the state space is too large and continuous to do
so.

While learning the meaning of two commands is evidence
of some success, it is very difficult to have the agent learn
the meaning of all four commands under this framework. In

Experiment 1 there is nothing compelling the agent to do
anything but head straight for the goal. There are multiple
ways to alter the problem to try and incentivize the agent to
take actions that do not move it closer to the goal—such as
placing the agent in a maze for instance—but we chose to
modify the goal state which led to Experiment 2.

In Experiment 2, we can see that the agent first heads straight
for the goal state and then seems to randomly wander back
and forth around the goal position (Figure 3, bottom row).
At this point, the agent has localized its belief states in the
position space to its exact location. Then it seems to focus on
arriving at the correct command mappings. To do this it has to
observe each command multiple times, which is easier to do
when the agent is closer to the goal state. The wandering takes
the agent all around the goal position (particularly focusing
on the boundaries between commands), so it is able to use
the different angles to improve its predictions for the correct
command mappings. We can see this in how the agent’s path
(the jagged red line) seems concentrated at the boundaries
between commands 2 (down) and 3 (right) and 3 and 4 (up) in
the bottom right image in Figure 3. This is a difficult problem,
so it is quite impressive that only 8 of the 100 trials took more
than the upper limit of 200 steps to converge at the correct
command mappings (Figure 4). The POMDP solver seems to
break down the problem into first arriving at the goal position
(localizing self) and then moving around it (determining the
rest of command mappings). This is reminiscent of how we
as humans might achieve the task if we were in the agent’s
position.

VII. FUTURE WORK

We propose three different possible extensions of this work.
First, in current experiments, the agent has no mechanism for
asking clarifying questions to improve its knowledge of the
commands. However, as Kollar, Tellex, Roy, et al. [10] have
proposed, agents learn best when dynamically engaging with
the human teacher based on a cost function over the possible
actions and the parts of the command. Woodward and Wood
[11] even frame the agent learning interactively from a human
teacher problem as an interactive partially observable Markov
decision process (I-POMDP), an extension of the POMDP to
the multi-agent setting. This interactivity of language learning
should be explored as future research. Finally, in Vogel, Bodoia,
Potts, et al. [2]’s original paper, some of this interactivity was
baked into the POMDP model. Modifying the query_speaker
routine to take into account the speaker’s belief over how
much the agent has learned would be another interesting path
to explore how Gricean pragmatics might play into language
learning.

VIII. CONCLUSION

Much of human language has physical grounding and we
learn language by hearing what people say when we interact
with the world. In this project, we focused on language learning
in this sense, attempting to teach an agent directional language.
We formulated this language learning problem as a POMDP
and observed modest success in teaching the agent what certain

7

commands mean while the agent was attempting to achieve a
secondary goal. Only once the goal was altered to explicitly
require the agent to learn the entire language did complete
understanding emerge.

IX. CONTRIBUTION OF GROUP MEMBERS

Discussions in the group as a whole were necessary for
formulation of the problem and experiments we performed.
Ben’s linguistics background led him to suggest the field initally,
and helped provide contextualization for the problem space.
He also programmed the MDP and value iteration part of
the project, and worked on the belief update function for the
POMDP part.

Levi worked on modifying the Roomba environment to be
suitable for this heavily modified problem, and also led the
literature review section and statistical analysis.

Suvir’s interest in visualization was useful for creating the UI
to illustrate solvers and policies in real-time (modified from the
Roomba problem) along with creating the data visualizations.
He was responsible for the remaining POMDP coding along
with testing out different solvers.

REFERENCES
[1] M. C. Frank and N. D. Goodman, “Predicting pragmatic

reasoning in language games,” Science, vol. 336, no. 6084,
pp. 998–998, 2012.

[2] A. Vogel, M. Bodoia, C. Potts, and D. Jurafsky, “Emergence
of gricean maxims from multi-agent decision theory,” in
Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2013, pp. 1072–1081.

[3] N. D. Goodman and M. C. Frank, “Pragmatic language
interpretation as probabilistic inference,” Trends in cognitive
sciences, vol. 20, no. 11, pp. 818–829, 2016.

[4] I. Mordatch and P. Abbeel, “Emergence of grounded compo-
sitional language in multi-agent populations,” arXiv preprint
arXiv:1703.04908, 2017.

[5] A. Vogel, C. Potts, and D. Jurafsky, “Implicatures and nested
beliefs in approximate decentralized-pomdps,” in Proceedings
of the 51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol. 2, 2013,
pp. 74–80.

[6] A. Vogel and D. Jurafsky, “Learning to follow navigational
directions,” in Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, Association for
Computational Linguistics, 2010, pp. 806–814.

[7] J. MacGlashan, M. Littman, R. Loftin, B. Peng, D. Roberts,
and M. E. Taylor, “Training an agent to ground commands
with reward and punishment,” in Proceedings of the AAAI
Machine Learning for Interactive Systems Workshop, 2014.

[8] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K.
Gupta, and M. J. Kochenderfer, “POMDPs.jl: A framework
for sequential decision making under uncertainty,” Journal of
Machine Learning Research, vol. 18, no. 26, pp. 1–5, 2017.
[Online]. Available: http://jmlr.org/papers/v18/16-300.html.

[9] Z. Sunberg and M. Kochenderfer, “Pomcpow: An online
algorithm for pomdps with continuous state, action, and
observation spaces,” arXiv preprint arXiv:1709.06196, 2017.

[10] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Grounding verbs
of motion in natural language commands to robots,” in
Experimental robotics, Springer, 2014, pp. 31–47.

[11] M. P. Woodward and R. J. Wood, “Learning from humans as
an i-pomdp,” arXiv preprint arXiv:1204.0274, 2012.

http://jmlr.org/papers/v18/16-300.html

	Introduction
	Background
	Related Work
	Problem Definition

	Baseline MDP Formulation
	Method
	Results
	Metrics

	Experiments in Removing Information
	Belief State Representation

	Experiment 1: No Learning
	Hypothesis
	Methods
	Results

	Experiment 2: Learning the Language
	Hypothesis
	Methods
	Results

	Discussion
	Reaching the Goal State
	Learning the Language

	Future Work
	Conclusion
	Contribution of Group Members

